

Available online at www.sciencedirect.com

Tetrahedron: *Asymmetry*

Tetrahedron: Asymmetry 17 (2006) 1931–1936

Asymmetric ring opening of *meso*-epoxides with *B*-halobis(2-isocaranyl)boranes 2-^dIcr₂BX

Chandra D. Roy[∗] and Herbert C. Brown[™]

Department of Chemistry, Herbert C. Brown Center for Borane Research, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA

> Received 5 June 2005; accepted 29 June 2006 Available online 25 July 2006

This paper is dedicated to Professor Herbert C. Brown

Abstract—Hydroboration of commercially available (+)-2-carene (96% ee) with either BH₂Cl·SMe₂ or BCl₃/Me₃SiH, provides chemically pure *B*-chlorobis(2-isocaranyl)borane (2-^dIcr₂BCl) whereas *B*-bromobis(2-isocaranyl)borane (2-^dIcr₂BBr) could only be prepared by Matteson's BBr₃/Me₃SiH procedure in high chemical yield and purity. The enantiomeric excess achieved with 2-^dIcr₂BCl (78%), was significantly higher than those realized with the previously explored reagent, ^dIpc₂BCl (41%), especially for *meso*-cyclohexene oxide. The new reagent, 2-^dIcr₂BBr also showed considerable improvements in enantiomeric excesses, in the cases of *meso*-cyclopentene oxide (67%) and *meso-cis*-2,3-butene oxide (78%) than those achieved with the previously reported reagent, ^dIpc₂BBr (57% and 61%, respectively).

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Asymmetric synthesis starting from meso-compounds is an effective and attractive approach to the synthesis of complex optically active organic compounds of chemical and biological interest.¹ Vicinal halohydrins, are also very useful synthetic intermediates for the synthesis of halogenated marine natural products (laurenyne, isodactylyne), antibiotics (thienamycin), and immuno-suppressant ISP-1.² Desymmetrization of either meso- or racemic-epoxides has been successfully accomplished with a wide variety of nucleophiles, such as, carbon nucleophiles,³ phenols,⁴ thiols,⁵ carboxylic acids,⁶ aromatic amines,⁷ azide,⁸ and cyanide.9 Although halides have been extensively used as nucleophiles¹⁰ in the enantioselective cleavage of epoxides, including *B*-halodiisopinocampheylboranes $(Ipc_2BX)^{11}$ from our laboratory, there have only been a couple of reports available in the literature by Denmark¹² and Buono¹³ which provide highly enantiomerically enriched chlorohydrins utilizing chiral organophosphorus Lewis base catalysts.

Although ^dIpc₂BX succeeded in cleaving the *meso*-epoxides enantioselectively. the moderate enantioselectivities achieved in many cases, especially with ^dIpc₂BCl and ^dIpc₂BBr, pressed the need for development of superior reagents which could achieve enantioselectivities approaching 100%. In the asymmetric allylboration, significant improvements in enantioselectivity were realized with *B*-allylbis(2-isocaranyl)borane (2-^dIcr₂BAll)¹⁴ over ^dIpc₂BAll. This persuaded us to synthesize and test these new chiral reagents, *B*-chlorobis(2-isocaranyl)borane (2-^dIcr₂BCl) and *B*-bromobis(2-isocaranyl)borane (2-^dIcr₂BBr) for the asymmetric cleavage of meso-epoxides. Herein, we report our results on the enantioselective cleavage of meso-epoxides with 2-dIcr₂BCl and 2-dIcr₂BBr.¹⁵

2. Results and discussion

At first, we decided to reexamine some of our earlier work on the enantioselective ring opening of a few representative *meso*-epoxides with d Ipc₂BX. A slight variation in the reaction conditions (little longer reaction time and slow warming after addition of *n*-butyraldehyde) and quick analysis of the halohydrins on Chiraldex-GTA analytical column, 10–20% higher enantiomeric excess is realized (Table 1).

^{*} Corresponding author. Tel.: +1 858 450 5618; fax: +1 858 453 3552; e-mail: chandra61804@yahoo.com

^{*} Deceased on December 19, 2004.

^{0957-4166/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2006.06.044

Entry	Epoxide	Reagent, reaction conditions	Halohydrin	Х	% Yield	% ee (Lit) ^a	Conf ^b
1	Ó	^d Ipc ₂ BCl, <i>n</i> -C ₅ H ₁₂ , -78 °C, 4 h ^d Ipc ₂ BBr, <i>n</i> -C ₅ H ₁₂ , -100 °C, 4 h	OH '''x	Cl Br	60 65	46 (44) 58 (48)	1 <i>R</i> ,2 <i>R</i> 1 <i>R</i> ,2 <i>R</i>
2	0	^d Ipc ₂ BCl, <i>n</i> -C ₅ H ₁₂ , -78°C, 4 h ^d Ipc ₂ BBr, <i>n</i> -C ₅ H ₁₂ , -100 °C, 4 h	OH '''X	Cl Br	70 75	41 (22) 92 (84)	1 <i>R</i> ,2 <i>R</i> 1 <i>R</i> ,2 <i>R</i>
3	0	^d Ipc ₂ BCl, <i>n</i> -C ₅ H ₁₂ , -78 °C, 4 h ^d Ipc ₂ BBr, <i>n</i> -C ₅ H ₁₂ , -100 °C, 4 h	OH ,,x	Cl Br	55 65	40 (27) 77 (63)	1 <i>R</i> ,2 <i>R</i> 1 <i>R</i> ,2 <i>R</i>

Table 1. Asymmetric ring opening of representative meso-epoxides with ^dIpc₂BX

^a Enantiomeric excess was determined on Chiraldex-GTA column as TFA derivatives.

^b The absolute configurations of the halohydrins (1*R*,2*R*) were assigned based on the results obtained from previous Ipc_2BX reactions from this laboratory. The superscript 'd' indicates that the reagent is derived from (+)- α -pinene.

B-Chlorobis(2-isocaranyl)borane (2-^dIcr₂BCl) (96% ee) (¹¹B NMR: δ 74.5 ppm in *n*-pentane) was successfully prepared either by the hydroboration of 2-carene (96% ee) with BH₂Cl·SMe₂ in CH₂Cl₂ for 12 h or by Matteson's BCl₃/Me₃SiH methodology in high yield and chemical purity (>95%) in *n*-hexanes.¹⁶ Unlike 2-^dIcr₂BCl, 2-^dIcr₂BBr could not be synthesized in high chemical purity either by direct hydroboration of 2-carene with BH₂Br·SMe₂ in CH₂Cl₂ or by the reaction of 2-^dIcr₂BH with Br₂ in CH₂Cl₂. Only Matteson's BBr₃/Me₃SiH procedure provided 2-^dIcr₂BBr (96% ee; ¹¹B NMR: δ 78 ppm in *n*-pentane) in high chemical yield and purity (>95%) in *n*-hexanes or *n*-heptane (Scheme 1).

B-Chlorobis(2-isocaranyl)borane successfully cleaved representative meso-epoxides at -78 °C to vicinal chlorohydrins in reasonably good yields (Table 2); however, the enantioselectivity of the reaction was highly substrate dependent (Scheme 2). Only meso-cyclohexene oxide reacted with significant improved enantioselectivity.¹⁷ No improvement in enantioselectivity was realised by lowering the reaction temperature to -100 °C. An improved enantiomeric excess achieved with 2-dIcr2BCl (78%) was far superior to ^dIpc₂BCl reported earlier by our research group (22-41%) and also by others. In the case of meso-cis-2,3butene oxide also, 18-19% improvement was achieved in comparison with ^dIpc₂BCl. *meso*-Cyclopentene oxide appeared to be a problematic substrate possibly due to ring strain. It is quite evident from the literature that mesocyclopentene oxide yields chlorohydrin of relatively lower enantiomeric excess. Even Buono's catalytic method, which appears to handle a wide variety of meso-epoxides (mesocyclohexene oxide, 84% ee; meso-cycloheptene oxide, 98% ee; *meso*-cyclooctene oxide, >99% ee) very efficiently, fails in the case of *meso*-cyclopentene oxide (23% ee).

Although ^dIpc₂BBr demonstrated its superiority over ^dIpc₂BCl in the asymmetric opening of *meso*-epoxides (48-84% ee), there remained ample scope for further improvements due to the moderate enantioselectivity with many substrates. Therefore, it was of great interest to synthesize and examine new reagents having different chiral auxiliaries. Encouraged by the results obtained with 2-^dIcr₂BCl, we undertook the enantioselective ring opening of meso-epoxides with 2-dIcr₂BBr. We were delighted to observe considerable improvements in enantiomeric excesses, especially with meso-cyclopentene- and meso-cis-2,3butene oxides (68% and 78%, respectively). The conversion of the borinate ester to the boronate ester was observed to be sluggish when the 2-carene chiral auxiliary was present in comparison with the α -pinene. This problem was overcome by the addition of a small amount of BF₃·OEt₂. With *meso*-cyclohexene oxide, only a comparable result (78% ee) was obtained. Considering the labile nature of the halohydrins toward racemization, we emphasized on the rapid isolation and quick analysis by chiral HPLC (with UV detector) by converting the hydroxyl group of the halohydrins into suitable UV sensitive esters (4-nitrobenzoate, 3,5dinitrobenzoate, and 1-naphthoate). It is important to note that 2-^dIcr₂BX produces vicinal halohydrins of the opposite configuration (1S,2S) in contrast to ${}^{d}Ipc_{2}BX$ (1R,2R). These results are summarized in Table 2.

Next, we decided to examine the enantioselective ring opening of *meso*-cyclohexene oxide as a model reaction with various Ter₂BCl reagents, such as ${}^{d}Eap_{2}BCl$ (97% ee),

Table 2. Asymmetric ring opening of representative meso-epoxides with 2-dIcr₂BX

Entry	Epoxide	Reagent, reaction conditions	Halohydrin	Х	% Yield	% ee ^a	Conf ^b
1		2- ^d Icr ₂ BCl, <i>n</i> -C ₅ H ₁₂ , -78 °C, 4 h 2- ^d Icr ₂ BBr, <i>n</i> -C ₅ H ₁₂ , -100 °C, 4 h	X NOH	Cl Br	66 72	78 78	1 <i>S</i> ,2 <i>S</i> 1 <i>S</i> ,2 <i>S</i>
2	\bigcirc o	2- ^d Icr ₂ BCl, <i>n</i> -C ₅ H ₁₂ , -78 °C, 4 h 2- ^d Icr ₂ BBr, <i>n</i> -C ₅ H ₁₂ , -100 °C, 4 h	X NOH	Cl Br	60 69	12 68	1 <i>S</i> ,2 <i>S</i> 1 <i>S</i> ,2 <i>S</i>
3	$\sum_{i=1}^{n}$	2- ^d Icr ₂ BCl, <i>n</i> -C ₅ H ₁₂ , -78 °C, 4 h 2- ^d Icr ₂ BBr, <i>n</i> -C ₅ H ₁₂ , -100 °C, 4 h	X, OH	Cl Br	58 70	57 78	1 <i>S</i> ,2 <i>S</i> 1 <i>S</i> ,2 <i>S</i>

^a Enantiomeric excess values were determined by HPLC analysis on a Daicel Chiralcel OD-H column as aryl esters (4-nitrobenzoate, 3,5-dinitrobenzoate, and 1-naphthoate).

^b The absolute configurations of the halohydrins (1*S*,2*S*) were assigned based on the results obtained from Ipc_2BX reactions. The superscript 'd' indicates that the reagent is derived from (+)-2-carene.

Scheme 2. Enantioselective ring opening of *meso*-cyclohexene oxide with 2-^dIcr₂BX.

Figure 1. Various structurally modified chiral reagents, Ter₂BX.

¹Eap₂BCl (91% ee), 4-^dIcr₂BCl (97% ee), ¹Cleap₂BCl (91% ee), along with previously studied ^dIpc₂BCl (99% ee) (Fig. 1). These chiral Ter₂BCl reagents were prepared by the hydroboration of the corresponding olefins with BH₂Cl·SMe₂ in CH₂Cl₂ for 12–48 h. Two of these reagents,

^dEap₂BCl¹⁸ and ¹Cleap₂BCl¹⁹ showed significant improvements in enantioselectivities with certain carbonyl compounds in asymmetric reduction over ^dIpc₂BCl. In order to compare the relative configurations of the product halohydrins, we reexamined the asymmetric ring opening of

Entry	Ter ₂ BCl	Reaction conditions	Yield %	⁰⁄₀ ee ^a	Conf ^b
1	^d Ipc ₂ BCl	<i>n</i> -Pentane, -78 °C, 4 h	70	41	1 <i>R</i> ,2 <i>R</i>
2	¹ Ipc ₂ BCl	<i>n</i> -Pentane, -78 °C, 4 h	66	39	1 <i>S</i> ,2 <i>S</i>
3	^d Eap ₂ BCl	<i>n</i> -Pentane, -78 °C, 4 h	65	32	1R, 2R
4	^l Eap ₂ BCl	<i>n</i> -Pentane, -78 °C, 4 h	68	28	1 <i>S</i> ,2 <i>S</i>
5	2- ^d Icr ₂ BCl	<i>n</i> -Pentane, -78 °C, 4 h	66	78	1 <i>S</i> ,2 <i>S</i>
6	$4-^{d}$ Icr ₂ BCl	<i>n</i> -Pentane, -78 °C, 4 h	68	19	1 <i>R</i> ,2 <i>R</i>
7	¹ Cleap ₂ BCl	<i>n</i> -Pentane, -78 °C, 4 h	65	15	1 <i>R</i> ,2 <i>R</i>

Table 3. Asymmetric ring opening of meso-cyclohexene oxide with various Ter₂BCl

^a Enantiomeric excess values were determined by HPLC analysis on a Daicel Chiralcel OD-H column as aryl esters (3,5-dinitrobenzoate and 1-naphthoate).

^b The absolute configurations of the halohydrins (1S,2S) were assigned based on the results obtained from Ipc₂BX reactions.

meso-cyclohexene oxide with both commercially available reagents, ^dIpc₂BCl and ¹Ipc₂BCl. Among various Ter₂BCl examined, 2-^dIcr₂BCl proved to be the best reagent of choice for the *meso*-cyclohexene oxide. The results are summarized in Table 3.

meso-Cyclopentene oxide appears to be a problematic substrate, possibly due to ring strain. It is quite evident from the literature that *meso*-cyclopentene oxide yields chlorohydrin of relatively lower enantiomeric excess. Even Buono's catalytic method, which handles a wide variety of *meso*-epoxides very efficiently, fails in the case of *meso*cyclopentene oxide. It might be possible that either *meso*cyclopentene oxide undergoes rapid cleavage even at lower temperatures or that the product could be undergoing comparatively rapid racemization under the reaction conditions considering the labile nature of halohydrins.²⁰

Next, we decided to examine the enantioselective ring opening of meso-cyclohexene oxide as a model reaction with various Ter₂BBr, such as ^dEap₂BBr (97% ee), ¹Eap₂BBr (91% ee), ¹Cleap₂BBr (91% ee), along with previously studied ^dIpc₂BBr (99% ee) (Fig. 1). The reagents, ^dEap₂BBr and ¹Eap₂BBr were successfully prepared either by the hydroboration with BH2Br·SMe2 or by Matteson's Me_3SiH/BBr_3 procedure whereas ¹Cleap₂BBr (91% ee) could only be prepared by the hydroboration of 2-(\beta-chloroethyl)apopinene using the Me₃SiH/BBr₃ method. In order to compare the results, we reexamined the asymmetric ring opening of meso-cyclohexene oxide with the commercially available ^dIpc₂BBr. A slight modification in the reaction conditions (a longer reaction time with slow warming after addition of an aldehyde) followed by quick analysis of the bromohydrin on the GC (Chiraldex-GTA), achieved slightly higher enantiomeric excess (92%) (Table 1). It is important to note that the column purified 2-bromocyclohexan-1-ol showed slightly lower enantiomeric excess (86%) (in comparison with the crude bromohydrin). Except for ¹Cleap₂BBr, all the four reagents, ^dIpc₂BBr, ^dEap₂BBr, ¹Eap₂BBr, and 2-^dIcr₂BBr showed comparable results for the *meso*-cyclohexene oxide (78–86% ee). The results are summarized in Table 4.

While determining the enantiomeric excess of the 2-bromo-1-trifluoroacetoxycyclohexane (obtained from ¹Eap₂BBr reaction) by an analytical GC on a Chiraldex-GTA column, we observed the racemization of the product TFA ester.²⁰ The HPLC analysis of various derivatives of β-bromohydrins either with 4-nitrobenzoyl chloride or 3,5dinitrobenzoyl chloride or 1-naphthoyl chloride in CH₂Cl₂ in the presence of Et₃N provided consistent enantiomeric excess (ee). We believe that the enantiomeric excess values of the original β -bromohydrins must be higher than the observed ee values, considering the labile nature of the halohydrins (quick analysis of the TFA derivative of the crude product showed higher enantiomeric excess than the purified product, especially for the bromohydrin derived from meso-cyclohexene oxide). Buono et al. reported a drop in the specific rotation (α) of 2-chlorocyclohexan-1-ol from -30 to -20 after 4 h in CH₂Cl₂.¹³

In the case of ^dIpc₂BX, experimental and stereochemical results supported an S_N2' -type reaction pathway involving a four-centered transition state, preceded by the complexation of boron with a lone pair on oxygen, and resulting in the selective cleavage of the enantiotopic *S* C–O bond in an antiperiplanar manner (Scheme 3). We believe that 2-^dIcr₂BX also follows a similar reaction pathway, as previously proposed for the ^dIpc₂BX reaction, but on the opposite enantiotopic *R* C–O bond resulting in the enantiomer of an opposite configuration. Presumably, steric factors are involved in the transition state as observed in the asymmetric hydroboration of *cis*-alkenes with ^dIpc₂BH.²¹

Table 4. Asymmetric ring opening of meso-cyclohexene oxide with various Ter₂BBr

Conf ^b
1 <i>R</i> ,2 <i>R</i>
1 <i>R</i> ,2 <i>R</i>
1S, 2S
1S, 2S
1 <i>R</i> ,2 <i>R</i>

^a Enantiomeric excess values were determined by HPLC analysis on a Daicel Chiralcel OD-H column as aryl esters (3,5-dinitrobenzoate and 1-naphthoate).

^b The absolute configurations of the bromohydrins (1S,2S) were assigned based on the results obtained from Ipc₂BX reactions.

Scheme 3. Four-centered transition state for the cleavage of *meso*-cyclohexene oxide with 2-^dIcr₂BX.

3. Conclusions

In conclusion, we have synthesized two chiral reagents, 2-dIcr₂BCl and 2-dIcr₂BBr and tested them in the asymmetric cleavage of three representative meso-epoxides. B-Chlorobis(2-isocaranyl)-borane (^dIcr₂BCl) has significantly improved the enantiomeric excess of 2-chlorocyclohexan-1ol from 41% to 78-79%. In the case of meso-cis-2,3-butene oxide also, 18-19% improvement was achieved in comparison with dIpc2BCl. Unfortunately, this reagent is highly substrate dependent and fails to afford highly enantiomerically enriched 2-chlorocyclopentan-1-ol with meso-cyclopentene oxide. In the case of B-bromobis(2-isocaranyl)borane (^dIcr₂BBr), considerable improvements in enantiomeric excesses were realized with both meso-cyclopentene oxide (58–68%) and *meso-cis-2*,3-butene oxides (61–78%) whereas meso-cyclohexene oxide showed only comparable enantioselectivity (78%).

Acknowledgments

This work was supported by grants from the Office of Naval Research and the Purdue Borane Research Fund.

References

- (a) Narasaka, K. Synthesis 1991, 39, 1, and pertinent references therein; (b) Hodgson, D. M.; Gibbs, A. R.; Lee, G. P. Tetrahedron 1996, 52, 14361, and references cited therein.
- 2. Faulkner, D. J. Nat. Prod. Rep. 1984, 251, and 1986, 1.
- (a) Mizuno, M.; Kanai, M.; Iida, A.; Tomioka, K. *Tetrahedron: Asymmetry* 1996, 7, 2583; (b) Oguni, N.; Miyagi, Y.; Itoh, K. *Tetrahedron Lett.* 1998, 39, 9023.
- (a) Iida, T.; Yamamoto, N.; Matsunaga, S.; Woo, H.-G.; Shibasaki, M. Angew. Chem., Int. Ed. 1998, 37, 2223; (b) Vogl, E. M.; Matsunaga, S.; Kanai, M.; Iida, T.; Shibasaki, M. Tetrahedron Lett. 1998, 39, 7917; (c) Matsunaga, S.; Das, J.; Roels, J.; Vogl, E. M.; Yamamoto, N.; Iida, T.; Yamaguchi, K.; Shibasaki, M. J. Am. Chem. Soc. 2000, 122, 2252.
- (a) Yamashita, H.; Mukaiyama, T. Chem. Lett. 1985, 1643;
 (b) Yamashita, H. Bull. Chem. Soc. Jpn. 1988, 61, 1213; (c) Iida, T.; Yamamoto, N.; Sasaki, H.; Shibasaki, M. J. Am. Chem. Soc. 1997, 118, 4783; (d) Wu, J.; Hou, X.-L.; Dai, L.-X.; Xia, L.-J.; Tang, M.-H. Tetrahedron: Asymmetry 1998, 9, 3431.
- Jacobsen, E. N.; Kakiuchi, F.; Konsler, R. G.; Larrow, J. F.; Tokunaga, M. *Tetrahedron Lett.* 1997, 38, 773.
- (a) Yamashita, H. Chem. Lett. 1987, 525; (b) Fu, X. L.; Wu, S. H. Synth. Commun. 1997, 27, 1677; (c) Hou, X.-L.; Wu, J.; Dai, L.-X.; Xia, L.-J.; Tang, M.-H. Tetrahedron: Asymmetry 1998, 9, 1747.
- (a) Hansen, K. B.; Leighton, J. L.; Jacobsen, E. N. J. Am. Chem. Soc. 1996, 118, 10924; (b) Schaus, S. E.; Larrow, J. F.;

Jacobsen, E. N. J. Org. Chem. 1997, 62, 4197; (c) Annis, A. D.; Helluin, O.; Jacobsen, E. N. Angew. Chem., Int. Ed. 1998, 37, 1907; (d) Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421.

- (a) Cole, B. M.; Shimizu, K. D.; Kruegar, C. A.; Harrity, J. P. A.; Snapper, M. L.; Hoveyda, A. H. *Angew. Chem., Int. Ed.* **1996**, *35*, 1668; (b) Schaus, S. E.; Jacobsen, E. N. Org. Lett. **2000**, *2*, 1001.
- (a) Naruse, Y.; Esaki, T.; Yamamoto, H. *Tetrahedron* 1988, 44, 4747; (b) Bonini, C.; Righi, G. *Synthesis* 1994, 225, and references cited therein; (c) Nugent, W. A. J. Am. Chem. Soc. 1998, 120, 7139.26; (d) Nugent, W. A.; Licini, G.; Boncio, M.; Bortolini, O.; Finn, M. G.; McCleland, W. Pure Appl. Chem. 1998, 70, 1041; (e) Bruns, S.; Haufe, G. *Tetrahedron:* Asymmetry 1999, 10, 1563.
- (a) Joshi, N. N.; Srebnik, M.; Brown, H. C. J. Am. Chem. Soc. 1988, 110, 6246; (b) Srebnik, M.; Joshi, N. N.; Brown, H. C. Israel J. Chem. 1989, 29, 229.
- Denmark, S. E.; Barsanti, P. A.; Wong, K. T.; Stavenger, R. A. J. Org. Chem. 1998, 63, 2428.
- (a) Brunel, J. M.; Legrand, O.; Reymond, S.; Buono, G. Angew. Chem., Int. Ed. 2000, 39, 2554; (b) Reymond, S.; Brunel, J. M.; Buono, G. Tetrahedron: Asymmetry 2000, 11, 1273; (c) Reymond, S.; Brunel, J. M.; Buono, G. Tetrahedron: Asymmetry 2000, 11, 4441; (d) Reymond, S.; Legrand, O.; Brunel, J. M.; Buono, G. Eur. J. Org. Chem. 2001, 2819; (e) Denmark, S. E.; Wynn, T.; Jellerichs, B. G. Angew. Chem., Int. Ed. 2001, 40, 2255; (f) Buono, G. Angew. Chem., Int. Ed. 2001, 40, 4536; (g) Buono, G. Eur. J. Org. Chem. 2002, 218.
- Brown, H. C.; Randad, R. S.; Bhat, K. S.; Zaidlewicz, M.; Racherla, U. S. J. Am. Chem. Soc. 1990, 112, 2389.
- 15. Roy, C. D.; Brown, H. C. Presented in H. C. Brown Lectures in Chemistry (1999), Purdue University, IN, USA.
- Dhokte, U. P.; Soundararajan, R.; Ramachandran, P. V.; Brown, H. C. *Tetrahedron Lett.* 1996, 37, 8345.
- 17. A representative procedure for the enantioselective opening of meso-cyclohexene oxide with 2-dIcr₂BCl: All operations are conducted under a nitrogen atmosphere. A 100 mL flask containing 2-^dIcr₂BCl (6 mmol) in dry *n*-pentane (24 mL, 0.25 M) was cooled to -78 °C and meso-cyclohexene oxide (5 mmol, 0.5 mL) was slowly added dropwise with stirring. Stirring was continued for 4 h, then *n*-butyraldehyde (10 mmol) was added followed by BF3 OEt2 (20 µl) and the reaction mixture was allowed to warm up slowly overnight. The conversion of the borinate to the boronate was followed by 11 B NMR (2–3 d). The resulting boronate was then treated with diethanolamine (5 mmol) to retrieve the 2-chlorocyclohexan-1-ol. The crude product was purified on silica gel column chromatography (5-10%) ethyl ether in *n*-hexanes or *n*-pentane) and the enantiomeric excess (ee) was determined by HPLC analysis on a Daicel Chiralcel OD-H column after transforming the 2-chlorocyclohexan-1-ol into both 3,5-dinitrobenzoyl- and 1-naphthoyl esters. Enatiomeric excess: 78% (1S, 2S).
- Brown, H. C.; Ramachandran, P. V.; Teodorovic, A. V.; Swaminathan, S. *Tetrahedron Lett.* 1991, 32, 6691.
- Ramachandran, P. V.; Brown, H. C. In *Current Topics in the Chemistry of Boron*; Kabalka, G. W., Ed.; Royal Society of Chemistry: United Kingdom, 1994; p 125.

20. We had earlier noticed the racemization of the trifluoroacetate derivative of the 2-bromocyclohexan-1-ol while determining the enantiomeric excess by the analytical GC on a Chiraldex-GTA column. Buono and co-workers had also observed the racemization of 2-chlorocyclohexan-1-ol while recording the optical rotation in CH₂Cl₂ (Paper withdrawn, Buono, G. Angew. Chem., Int. Ed. 2001, 40, 4536; Buono, G. Eur. J. Org. Chem. 2002, 218).

21. Brown, H. C.; Jadhav, P. K.; Mandal, A. K. Tetrahedron 1981, 37, 3547.